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I. In order to intensify the mixing of two flows in a channel, in a number of cases 
lobe-shaped profiled nozzles of the type shown in Fig. 1 may be installed in front of the 
common chamber. These nozzles have a developed exit perimeter and therefore increase the 
overall intensity of turbulent transfer. Moreover, passage over the profiled surface may 
lead to the formation of strong secondary flows, which also promote mixing. 

In [i, 2] a method of calculating flow mixing in the presence of intense cross flows, 
based on the numerical integration of parabolic equations is proposed. Accordingly, the 
cross flows in the chamber inlet section must be given. In [2] the experimental results of 
[3] were used for this purpose. In the same study a simplified method of modeling secondary 
flows is proposed. The auxiliary problem of three-dimensional ideal-gas flow past a nozzle 
with a tangential discontinuity behind the edge is therefore solved and the transverse veloc- 
ity field in the exit section is found. In view of the fact that in mixers with lobe-shaped 
nozzles the Mach numbers are usually small (~0.5), it is permissible to solve the problem in 
the incompressible approximation. 

2. We will consider the auxiliary problem for an annular channel (or a channel of rec- 
tangular cross section) with cylindrical inlet and outlet (Fig. i, the contour is shown as a 
continuous line), in modeling the real mixer (broken line) it may be assumed that the inlet 
and outlet sections are abutted by cylindrical parts of infinite extent. The surface sepa- 
rating the two flows at the inlet is a circular cylindrical surface (or plane), and its pro- 
filed part can be described by relations of the form: 

y = Y(x. t), z = Z(x, t), ( 2 . 1 )  

where x, y, and z are Cartesian coordinates, t is a parameter (for example, polar angle in 
the yz plane), and the functions u Z are periodic in t. Behind the rear edge of the sepa- 
rator a surface of tangential discontinuity, assumed to belong to the class of surfaces of 
the form (2.1), is introduced. The rear edge of the separator lies either in the section 
x = const (normal cutoff) or (oblique cutoff) on the conical surface ~(y2 + z 2) = (const - 
x) 2 (for a rectangular channel, in the plane, x + ~y = const). 

In what follows the parameters below the separator are identified by the subscript i, 
those above the separator by the subscript 2. The flow in channels i and 2 is ass~ed to be 
potential. Since the inlet and outlet are cylindrical, the inlet (x + -~) and outlet (x 
+~) flows are uniform, and as x + +~ the surface of tangential discontinuity asymptotically 
approaches the cylindrical. The boundary value problems for determining the velocity poten- 
tials ~ in channels 1 and 2 can be formulated as follows: 

a2% 
0'-'% + ~ + a'q~___~ = O, i = 1, 2; 
a T  @~ a~ 2 ( 2 . 2  ) 

a% 
X = Xo, ax Ui ;  X ~ Xe; ~F~ = O, r ~ S ,  a %  = O, i = 1,  2 .  (2.3) 

Here, 3/3n is the derivative with respect to the normal to the flow surface, r is the radius 
vector of the point, U is the velocity of the uniform flow at the inlet. The velocity vector 
V with components Vx, Vy, V z is equal to the gradient of ~ with the opposite sign (V = --V~), 
V is the modulus of the velocity. Generally speaking the first two conditions (2.3) must be 
carried to infinity, i.e., x 0 ~ -~, x e + +~. However, in the numerical solution of the prob- 
lem it is necessary to consider a finite domain, and choose the parameters x 0 and x e so that 
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Fig. 1 

the solution does not depend on their value. In order to determine the shape of the surface 
of tangential discontinuity it is necessary to use the condition of continuity of the static 
pressure. By means of the Bernoulli integral this condition can be reduced to 

V ~ - -  V~ = Dr. (2.4) 

The constant Dp is not known in advance, since the problem with given flowrates is consid- 

ered, and the total pressure difference, proportional to the left side of (2.4), must be de- 
termined. The parameter Dp can be found by requiring the satisfaction of the condition of 

finiteness of the velocity at the rear edge (Chaplygin-Joukowski postulate). 

In general, an explicit functional dependence of the velocity distribution on the param- 
eters determining the shape of the tangential discontinuity is not known. Therefore it is 
not possible to invert the relation (2.4) and the surface of tangential discontinuity is 
found by means of iterations, which are so carried out that, finally, the no-slip conditions 
[last condition in (2.3)] and relation (2.4) on the discontinuity are satisfied. As the 
initial approximation we take the surface that smoothly joins the surface of the separator 
at the rear edge, i.e., the common flow surface of channels 1 and 2 is a Lyapunov surface. 
Boundary value problems (2.2) and (2.3) are solved, and as a result we find the potential 
and velocity distributions on the surface. We then recalculate the coordinates of points 
on the surface of discontinuity in accordance with the expression 

Ar(x, t) = ([V~ (t)] --  [V2(x, t)]).n.?, (2.5) 

where A r is the increment of the coordinates of a point on the surface described by relations 
(2.1), n is the outward normal with respect to flow i, the square brackets denote the dif- 
ference between the parameters of flows 1 and 2, ~ is an iteration parameter, and V c is the 
distribution of the velocity modulus along the edge. As soon as the new position of the 
surface of discontinuity has been found, the entire procedure is repeated, and so on to con- 
vergence. For solving boundary value problems (2.2), (2.3) we used the boundary-integral 
equation method [4]. 

3. In order to test the iteration method we considered two model problems. In the 
first we calculated the flow in a plane channel of constant width H with a separator whose 
surface was composed of segments of planes: y/L = l when x ! -i, y - tan~'x = 0 when -i ! 
x 5 0. As the characteristic length L we chose the projection of the deflected tail of the 
separator on the x axis, H/L = 2, and the lower wall is located at y = 0, ~ = 15 ~ . For this 
channel it is possible to find a particular analytic solution. In fact, by means of the 
Schwarz-~]hristoffel integral the flow domain in the plane ~ = x + iy can be mapped onto the 
upper half-plane of the auxiliary complex variable ~: 

q - - N o =  , ~ , d x  ( 3 . 1 )  --Y- { ~T------ a/ 
\~"- 17 

(qc is the coordinate of the point on the rear edge). The transformation parameters can be 
found from the relations 

b 

l--a] ( t - - c ) =  t, \ ~ }  \7~--h] 1--~ d ' ~ = T '  (3.2) 
0 

where -i < a < c < 0 < b < I. Assuming the angle e to be small, from this we obtain b = 

-a = /i'- exp(-~) + O(~), c =-(~/~)In ((i + b)/(l - b)) + O(a2). The accuracy can subsequently 
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Fig. 2 Fig. 3 

be improved numerically by means of relations (3.2). We note that here the integral is non- 
singular. 

The complex potential of the continuous flow in the channel in the upper half-plane of 
is two-source flow potential: 

u1[ ~ + ~  ] 
z = ~ + i~ = -~- In (~ - i) + F-c5 in (~ + I) (3.3) 

(~ is the stream function). The solution (3.3) satisfies the Chaplygin-Joukowski postulate 
and is a particular case describing the flow in a channel with a separator when Dp = 0 (for 

the indicated values of the geometric parameters this corresponds to the condition U2/U l = 
0.46). Having calculated the root of the equation Imx = UI, we obtain the image of the 
streamline departing from the rear edge, and after evaluating the integral (3.1) we can de- 
termine its position in the physical plane. 

In Fig. 2 the solution in question (continuous curve) is compared with the numerical 
calculations (broken curve). Despite the fact that the numerical calculations were carried 
out on a rather coarse grid, with the separatrix divided into only five parts, the agreement 
between the numerical and exact solutions is perfectly satisfactory, the error in determin- 
ing the separatrix being 2% and the error in determining the velocity fields of the order of 
3%. 

In the second example we introduced into the same channel a separator whose surface is 
described by the relations 

(+) L -- y 0 when--L--~--m i~-L-=Y tg(15 ~ ~ when -- I~+~0 

in this case 0 5 z/L 5 0.75. The flow in this channel is essentially three-dimensional and 
periodic in z with period equal to 1.5. We investigated the case U=/U I = I, which in the 
situation in question corresponds to Dp = 0. 

Figure 3 shows the general appearance of the surface of the separator and the tangential 
discontinuity (top); the diagram corresponds to a half-period with respect to z. It is in- 
teresting to note that the surface of the separator is described by a function of the form 
y = Y(x, z), but the surface of discontinuity belongs to the more general class (2.1), where 
the line of intersection of this surface with the yz plane is a parametric curve. 

With reference to this example we investigated the effect of the position of the inlet 
and outlet boundaries of the computation domain on the result. If the length of the cylin- 
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drical inlet sections Ax/L > i, the result is almost independent of the value of x 0. The 
position of the outlet boundary has a more important effect. In the middle of Fig. 3 we 
have plotted the lines of intersection of the surface of discontinuity with the planes z = 
0 and z/L = 0.75, obtained for different positions of the outlet boundary (curves 1-3 corre- 
spond to xe/L = 5.3, 9.3, and 14.6). Clearly, the asymptote is approached slowly, and to 
obtain the asymptotic position of the end of the surface of discontinuity it is necessary 
to take Xe/L ~ 15.0. However, both the shape of the surface near the edge and the transverse 
velocity distribution in the separator cutoff section are quite weakly sensitive to the posi- 
tion of the outlet section. This situation is illustrated by the transverse velocity dis- 

tribution W c = ~Vy ~ + Vz 2 along the edge of the separator in the section x = 0 obtained for 

three values of xe/L (bottom of Fig. 3). As x e increases convergence is observed, and for 
determining the cross flows with an acceptable relative error of 5% it is possible to locate 
the outlet section at xe/L ~ 5.0, and thereby avoid excessive computation. 

4. In order to study the possibilities of modeling the action of secondary flows on 
the mixing process we examined the flow in the mixer shown in Fig. 1 (broken contour). This 
flow was calculated in [2], where the values of all the parameters determining the flow re- 
gime were also given. In [2] the velocity field in projection on the nozzle exit surface 
W c was taken from the experiments reported in [3]. In the present study we repeated the 
calculations using the method of [2], but found W c from the solution of the auxiliary prob- 
lem. 

To the real mixer we fitted cylindrical inlet and outlet sections (continuous line in 
Fig. I), whose length was chosen on the basis of the results of a systematic investigation. 
Certain unimportant details of the petal shape, the rounding of the corners, etc., were not 
reproduced in the calculations (see Fig. i). The parameter Uz/U 1 was assumed to be equal to 
0.62, which corresponds to a velocity ratio of 0.86 at the inlet to the common chamber. The 
calculated distribution Wc/u (u is the velocity component along the normal to the exit sur- 
face) is similar to that obtained experimentally, as evidenced by the comparison in Fig. 4, 
where the calculation results are shown at the top and the experimental results at the bot- 
tom. 

The results of calculating the stagnation temperature isolines at the mixer chamber out- 
let with the initial conditions for the cross flows determined as described above are pre- 
sented in Fig. 5 (top left). The figure also shows (top right) the experimental data and, 
at the bottom, the results of the calculations made without taking cross flows into account. 
Clearly, if the cross flows are not taken into account, then the calculations are not in 
qualitative agreement with experiment. When the cross flows are taken into account, there 
is qualitative and satisfactory quantitative agreement, as in [2]. 

Thus, for modeling the secondary flows behind lobe-shaped nozzles at the inlet to a 
mixing chamber it is permissible to use the model of potential flow with a tangential dis- 
continuity. 

452 



LITERATURE CITED 

i. V. I. Vasil'ev and S. Yu. Krasheninnikov, "Calculation of three-dimensional weakly expand- 
ing flow in a jet and channel," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1984). 

2. V. I. Vasil'ev, "Calculation of three-dimensional nozzle flow with mixing in the presence 
of an important vorticity effect," Inzh.-fiz. Zh., __54, No. 4 (1988). 

3. B. Anderson, L. Povinelli, and W. Gerstenmaier, "Influence of pressure-driven secondary 
flows on the behavior of turbofan forced mixers," AIAA Paper No. 1198, New York (1980). 

4. T. A. Cruse and F. J. Rizzo (eds.), Boundary-Integral Equation Method, ASME (1!)75). 

MOSSBAUER STUDIES OF UNIAXIALLY LOADED FERROMAGNETIC SAMPLES 

V. P. Larionov and Ya. S. Semenov UDC 539.56 

Practically all constructions and materials are structurally inhomogeneous. In some 
cases this inhomogeneity is attributable to the material production technology, and in others 
it is caused by the introduction of a second phase for the purpose of investing the material 
with new properties. Regardless of the properties of the material, these inhomogeneities be- 
come stress concentrators, which have a powerful influence on the ductile-brittle transition 
temperature. The ductile-brittle transition always shifts toward positive temperatures when 
materials with stress concentrators are subjected to various kinds of loading [i, 2]. 

We have therefore undertaken a study of uniaxially stressed samples, using Mossbauer 
spectroscopy. We chose ferromagnetic materials whose spectra had a well-resolved Zeeman sex- 
tet. Electric quadrupole and magnetic dipole hyperfine interactions, magnetic texture modi- 
fications, relaxation phenomena [3], and hence variations of the electronic structure in uni- 
axial loading are easily resolved in such spectra. 

EXPERIMENTAL PROCEDURE AND RESULTS 

A special test stand consisting of a movable clamp and a fixed clamp was developed for 
the Mossbauer investigation of uniaxially loaded samples. The movable clamp is connected to 
the loading machine, which sets the value of the applied load. 

The samples were prepared from alloys of the binary system Fe-Si with the following com- 
positions: Fe-0.2%Si; Fe-l.0%Si; Fe-2.0%Si; Fe-3.6%Si. Foil samples were made by the stan- 
dard technique in the form of ribbons of length 20-30 mm, width 20-25 mm, and thickness ~60 
pm. A constant-acceleration electrodynamic spectrometer was used to obtain the Mossbauer 
spectra. 

Figure 1 shows the Mossbauer spectra of different compositions of the binary system 
Fe-Si (the channel number is plotted along the horizontal axis, and the relative intensity 
along the vertical). Figure la gives the spectra of samples loaded uniaxially in the elastic 
domain with mass fractions of silicon equal to 2% (spectra 1-3 for o = 0, 0.4, 6 kg/mm 2) and 
3.6% (spectra 5-7 for the same values of o). A characteristic feature is the fact that the 
usual Zeeman sextets for the given composition under loading exhibit an increase in the ef- 
fective magnetic field, a change in the intensity ratio, and a positive isomer shift. 

Figure ib gives the Mossbauer spectra of samples with mass fractions of silicon equal 
to 0.2% (spectra 1-3 for o = 0, 14, 28 kg/mm2), 1% (spectra 4-6 for the same values of o), 
and 3.6% (spectra 7 and 8 for o = 0 kg/mm 2 and 14 kg/mm2). These spectra exhibit changes 
in the intensity ratio and isomer shifts without any significant changes in the effective 
magnetic field as the loads are increased. 

We calculated the Mossbauer spectra according to the model postulated in [4]. The re- 
sults of processing of the spectra by this procedure are shown in Fig. 2, where &EQ is the 
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